Меры риска
Дисперсия.
При действии стохастических причин любое конкретное значение финансового результата является реализацией определенной случайной величины . При этом ожидаемый результат оценивается математическим ожиданием , а его риск - дисперсией
:
.
Чем больше дисперсия (вариация), тем в среднем больше отклонение, то есть выше и риск.
Среднеквадратическая характеристика риска
. Зачастую за степень рискованности принимают также величину среднеквадратического отклонения (СКО)
называемую риском анализируемого показателя : доходы, эффективности вложения и т.д. в зависимости от конкретного содержания.
Оценка риска акции во времени
. Для оценивания риска в зависимости от длительности временного периода опираются на математическое описание ценовой динамики акций, принятое в модели Блэка-Шоулса. В ее обозначениях риск акции измеряется стандартным отклонением доходности, представленной как непрерывно начисляемый процент в расчете на год (в виде десятичной дроби), а - ожидаемое значение годовой ставки. Согласно свойствам этой модели математическое ожидание доходности и ее риск достигнут за время Т (в долях года) значений:
Опираясь на эти формулы, можно переходить от оценок дисперсии, а значит, и оценок риска для одного периода к оценкам в расчете на другой период.
Вместе с тем соотношения (2.3) весьма приближенны, что подтверждается реальными данными, и простота предлагаемого способа противоречит точности получаемых с его помощью характеристик.
Коэффициент вариации
. Для результата, задаваемого объемными показателями (доход, валовой выпуск, издержки и т.д.), в качестве информативной меры риска используется такая относительная характеристика рассеяния, как коэффициент вариации:
Если же показатель дает относительную характеристику результата, например доходность, то для измерения риска достаточно ограничиться абсолютной мерой рассеяния .
Среднее абсолютное отклонение
. Этот показатель основан на оценивании линейных уклонений случайных значений результата от его математического ожидания:
.
Связь между линейным и квадратичным отклонениями устанавливается с помощью известного неравенства Чебышева. Согласно которого, вероятность того, что случайная величина отклонится от своего математического ожидания не меньше, чем заданный допуск , не превосходит ее дисперсии, деленной на :
.
Полудисперсия
. Эта мера риска учитывает рассеяние только в сторону неблагоприятных значений. Для максимизируемого показателя отклонения в меньшую сторону от его среднего значения сопряжены с риском потерь, а движения в противоположном направлении дают выигрыши и определяют уже не риски, а шансы. Полудисперсия эти положительные сдвиги не учитывает, они приравниваются нулевым значениям, а вычисляется только по отрицательным значениям, а вычисляется только по отрицательным отклонениям . Для дискретной случайной величины с вероятностью этот измеритель риска определяется суммой взвешенных по вероятностям значений квадратов неблагоприятных отклонений от среднего :